Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.579
Filtrar
1.
Lupus Sci Med ; 11(1)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599670

RESUMO

BACKGROUND: Cranial neuropathies (CN) are a rare neuropsychiatric SLE (NPSLE) manifestation. Previous studies reported that antibodies to the kinesin family member 20B (KIF20B) (anti-KIF20B) protein were associated with idiopathic ataxia and CN. We assessed anti-KIF20B as a potential biomarker for NPSLE in an international SLE inception cohort. METHODS: Individuals fulfilling the revised 1997 American College of Rheumatology (ACR) SLE classification criteria were enrolled from 31 centres from 1999 to 2011 and followed annually in the Systemic Lupus Erythematosus International Collaborating Clinics inception cohort. Anti-KIF20B testing was performed on baseline (within 15 months of diagnosis or first annual visit) samples using an addressable laser bead immunoassay. Logistic regression (penalised maximum likelihood and adjusting for confounding variables) examined the association between anti-KIF20B and NPSLE manifestations (1999 ACR case definitions), including CN, occurring over the first 5 years of follow-up. RESULTS: Of the 1827 enrolled cohort members, baseline serum and 5 years of follow-up data were available on 795 patients who were included in this study: 29.8% were anti-KIF20B-positive, 88.7% female, and 52.1% White. The frequency of anti-KIF20B positivity differed only for those with CN (n=10) versus without CN (n=785) (70.0% vs 29.3%; OR 5.2, 95% CI 1.4, 18.5). Compared with patients without CN, patients with CN were more likely to fulfil the ACR haematological (90.0% vs 66.1%; difference 23.9%, 95% CI 5.0%, 42.8%) and ANA (100% vs 95.7%; difference 4.3%, 95% CI 2.9%, 5.8%) criteria. In the multivariate analysis adjusting for age at baseline, female, White race and ethnicity, and ACR haematological and ANA criteria, anti-KIF20B positivity remained associated with CN (OR 5.2, 95% CI 1.4, 19.1). CONCLUSION: Anti-KIF20B is a potential biomarker for SLE-related CN. Further studies are needed to examine how autoantibodies against KIF20B, which is variably expressed in a variety of neurological cells, contribute to disease pathogenesis.


Assuntos
Autoanticorpos , Cinesinas , Lúpus Eritematoso Sistêmico , Feminino , Humanos , Masculino , Biomarcadores , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/diagnóstico
2.
Nat Commun ; 15(1): 3456, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658528

RESUMO

Intraflagellar transport (IFT) orchestrates entry of proteins into primary cilia. At the ciliary base, assembled IFT trains, driven by kinesin-2 motors, can transport cargo proteins into the cilium, across the crowded transition zone. How trains assemble at the base and how proteins associate with them is far from understood. Here, we use single-molecule imaging in the cilia of C. elegans chemosensory neurons to directly visualize the entry of kinesin-2 motors, kinesin-II and OSM-3, as well as anterograde cargo proteins, IFT dynein and tubulin. Single-particle tracking shows that IFT components associate with trains sequentially, both in time and space. Super-resolution maps of IFT components in wild-type and mutant worms reveal ciliary ultrastructure and show that kinesin-II is essential for axonemal organization. Finally, imaging cilia lacking kinesin-II and/or transition zone function uncovers the interplay of kinesin-II and OSM-3 in driving efficient transport of IFT trains across the transition zone.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cílios , Cinesinas , Caenorhabditis elegans/metabolismo , Animais , Cílios/metabolismo , Cílios/ultraestrutura , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cinesinas/metabolismo , Cinesinas/genética , Flagelos/metabolismo , Flagelos/ultraestrutura , Tubulina (Proteína)/metabolismo , Axonema/metabolismo , Axonema/ultraestrutura , Dineínas/metabolismo , Transporte Biológico , Imagem Individual de Molécula , Transporte Proteico
3.
Elife ; 132024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564240

RESUMO

The chromosomal passenger complex (CPC) is an important regulator of cell division, which shows dynamic subcellular localization throughout mitosis, including kinetochores and the spindle midzone. In traditional model eukaryotes such as yeasts and humans, the CPC consists of the catalytic subunit Aurora B kinase, its activator INCENP, and the localization module proteins Borealin and Survivin. Intriguingly, Aurora B and INCENP as well as their localization pattern are conserved in kinetoplastids, an evolutionarily divergent group of eukaryotes that possess unique kinetochore proteins and lack homologs of Borealin or Survivin. It is not understood how the kinetoplastid CPC assembles nor how it is targeted to its subcellular destinations during the cell cycle. Here, we identify two orphan kinesins, KIN-A and KIN-B, as bona fide CPC proteins in Trypanosoma brucei, the kinetoplastid parasite that causes African sleeping sickness. KIN-A and KIN-B form a scaffold for the assembly of the remaining CPC subunits. We show that the C-terminal unstructured tail of KIN-A interacts with the KKT8 complex at kinetochores, while its N-terminal motor domain promotes CPC translocation to spindle microtubules. Thus, the KIN-A:KIN-B complex constitutes a unique 'two-in-one' CPC localization module, which directs the CPC to kinetochores from S phase until metaphase and to the central spindle in anaphase. Our findings highlight the evolutionary diversity of CPC proteins and raise the possibility that kinesins may have served as the original transport vehicles for Aurora kinases in early eukaryotes.


Assuntos
Cinesinas , Trypanosoma , Humanos , Survivina , Citoesqueleto , Mitose
4.
Methods Mol Biol ; 2794: 79-94, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630222

RESUMO

Reconstitution of intracellular transport in cell-free in vitro assays enables the understanding and dissection of the molecular mechanisms that underlie membrane traffic. Using total internal reflection fluorescence (TIRF) microscopy and microtubules, which are immobilized to a functionalized glass surface, the kinetic properties of single kinesin molecules can be imaged and analyzed in the presence or absence of microtubule-associated proteins. Here, we describe methods for the in vitro reconstitution of the motility of the neuronal kinesin motor KIF1A on microtubules associated with heteromeric septin (SEPT2/6/7) complexes. This method can be adapted for various neuronal septin complexes and kinesin motors, leading to new insights into the spatial regulation of neuronal membrane traffic by microtubule-associated septins.


Assuntos
Cinesinas , Septinas , Microtúbulos , Citoesqueleto , Proteínas Associadas aos Microtúbulos
5.
J Phys Chem Lett ; 15(14): 3893-3899, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38563569

RESUMO

Kinesin is a typical motor protein that can use the chemical energy of ATP hydrolysis to step processively on microtubules, alternating between one-head-bound and two-head-bound states. Some published experimental results showed that the duration of the one-head-bound state increases greatly with a decrease in ATP concentration, whereas the duration of the two-head-bound state is independent of ATP concentration, indicating that ATP binding occurs in the one-head-bound state. On the contrary, other experimental results showed that the duration of the two-head-bound state increases greatly with a decrease in ATP concentration, whereas the duration of the one-head-bound state increases slightly with a decrease in ATP concentration, indicating that ATP binding occurs mainly in the two-head-bound state. Here, we explain consistently and quantitatively these contradictory experimental results, resolving the controversy that is critical to the chemomechanical coupling mechanism of the kinesin motor.


Assuntos
Trifosfato de Adenosina , Cinesinas , Cinesinas/metabolismo , Trifosfato de Adenosina/metabolismo , Microtúbulos/metabolismo , Cinética
6.
Cell Mol Life Sci ; 81(1): 168, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587639

RESUMO

Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.


Assuntos
Cinesinas , Oócitos , Animais , Camundongos , Transporte Biológico , Cinesinas/genética , Meiose , Metáfase
7.
J Exp Clin Cancer Res ; 43(1): 68, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38439082

RESUMO

BACKGROUND: Proteasome inhibitors (PIs) are one of the most important classes of drugs for the treatment of multiple myeloma (MM). However, almost all patients with MM develop PI resistance, resulting in therapeutic failure. Therefore, the mechanisms underlying PI resistance in MM require further investigation. METHODS: We used several MM cell lines to establish PI-resistant MM cell lines. We performed RNA microarray and EccDNA-seq in MM cell lines and collected human primary MM samples to explore gene profiles. We evaluated the effect of MUC20 on cuproptosis of PI-resistant MM cells using Co-immunoprecipitation (Co-IP), Seahorse bioenergetic profiling and in vivo assay. RESULTS: This study revealed that the downregulation of Mucin 20 (MUC20) could predict PI sensitivity and outcomes in MM patients. Besides, MUC20 attenuated PI resistance in MM cells by inducing cuproptosis via the inhibition of cyclin-dependent kinase inhibitor 2 A expression (CDKN2A), which was achieved by hindering MET proto-oncogene, receptor tyrosine kinase (MET) activation. Moreover, MUC20 suppressed MET activation by repressing insulin-like growth factor receptor-1 (IGF-1R) lactylation in PI-resistant MM cells. This study is the first to perform extrachromosomal circular DNA (eccDNA) sequencing for MM, and it revealed that eccDNA induced PI resistance by amplifying kinesin family member 3 C (KIF3C) to reduce MUC20 expression in MM. CONCLUSION: Our findings indicated that MUC20 regulated by eccDNA alleviates PI resistance of MM by modulating cuproptosis, which would provide novel strategies for the treatment of PI-resistant MM.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Humanos , Inibidores de Proteassoma/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Oncogenes , Citoplasma , Antivirais , DNA , DNA Circular , Cinesinas , Mucinas
8.
Int J Oncol ; 64(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38426627

RESUMO

Despite advances in treatment and early detection, breast cancer remains one of the most common types of cancer and is the second leading cause of cancer death after lung cancer in women. Therefore, there is an urgent need to develop new biomarkers and therapeutic targets for the treatment of breast cancer. Based on gene expression profiles and subsequent screening performed in a preliminary study, kinesin family member 20B (KIF20B) was selected as a candidate target molecule, because it was highly and frequently expressed in all subtypes of breast cancer and barely detected in normal tissues. Reverse transcription­quantitative PCR and western blotting revealed that KIF20B mRNA and protein expression levels were upregulated in most breast cancer cell lines but were scarcely expressed in normal mammary epithelial cells. Immunohistochemical staining of a tissue microarray showed that KIF20B was detected in 145 out of 251 (57.8%) breast cancer tissues. Strong KIF20B expression was significantly related to advanced pathological N stage. Moreover, patients with breast cancer and strong KIF20B expression exhibited a significantly worse prognosis than those with weak or negative KIF20B expression (P<0.0001, log­rank test). In multivariate analysis, strong expression was an independent prognostic factor for patients with breast cancer. Furthermore, knockdown of KIF20B expression by small interfering RNA inhibited breast cancer cell proliferation and induced apoptosis. In addition, Matrigel cell invasion assays revealed that the invasiveness of breast cancer cells was significantly decreased by KIF20B silencing. Since KIF20B is an oncoprotein that is strongly expressed in highly malignant clinical breast cancer and serves a pivotal role in breast cancer cell proliferation, survival and invasion, KIF20B could be considered a candidate biomarker for prognostic prediction and a potential molecular target for developing new therapeutics, such as small molecule inhibitors, for a wide variety of breast cancers.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Prognóstico , RNA Interferente Pequeno , Células MCF-7 , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Movimento Celular/genética , Cinesinas/metabolismo
9.
Nat Commun ; 15(1): 1948, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431715

RESUMO

Microtubules (MTs) are key components of the eukaryotic cytoskeleton and are essential for intracellular organization, organelle trafficking and mitosis. MT tasks depend on binding and interactions with MT-associated proteins (MAPs). MT-associated protein 7 (MAP7) has the unusual ability of both MT binding and activating kinesin-1-mediated cargo transport along MTs. Additionally, the protein is reported to stabilize MTs with its 112 amino-acid long MT-binding domain (MTBD). Here we investigate the structural basis of the interaction of MAP7 MTBD with the MT lattice. Using a combination of solid and solution-state nuclear magnetic resonance (NMR) spectroscopy with electron microscopy, fluorescence anisotropy and isothermal titration calorimetry, we shed light on the binding mode of MAP7 to MTs at an atomic level. Our results show that a combination of interactions between MAP7 and MT lattice extending beyond a single tubulin dimer and including tubulin C-terminal tails contribute to formation of the MAP7-MT complex.


Assuntos
Proteínas Associadas aos Microtúbulos , Tubulina (Proteína) , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Organelas/metabolismo , Tubulina (Proteína)/metabolismo , Humanos
10.
Mil Med Res ; 11(1): 17, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475827

RESUMO

BACKGROUND: Tactile and mechanical pain are crucial to our interaction with the environment, yet the underpinning molecular mechanism is still elusive. Endophilin A2 (EndoA2) is an evolutionarily conserved protein that is documented in the endocytosis pathway. However, the role of EndoA2 in the regulation of mechanical sensitivity and its underlying mechanisms are currently unclear. METHODS: Male and female C57BL/6 mice (8-12 weeks) and male cynomolgus monkeys (7-10 years old) were used in our experiments. Nerve injury-, inflammatory-, and chemotherapy-induced pathological pain models were established for this study. Behavioral tests of touch, mechanical pain, heat pain, and cold pain were performed in mice and nonhuman primates. Western blotting, immunostaining, co-immunoprecipitation, proximity ligation and patch-clamp recordings were performed to gain insight into the mechanisms. RESULTS: The results showed that EndoA2 was primarily distributed in neurofilament-200-positive (NF200+) medium-to-large diameter dorsal root ganglion (DRG) neurons of mice and humans. Loss of EndoA2 in mouse NF200+ DRG neurons selectively impaired the tactile and mechanical allodynia. Furthermore, EndoA2 interacted with the mechanically sensitive ion channel Piezo2 and promoted the membrane trafficking of Piezo2 in DRG neurons. Moreover, as an adaptor protein, EndoA2 also bound to kinesin family member 5B (KIF5B), which was involved in the EndoA2-mediated membrane trafficking process of Piezo2. Loss of EndoA2 in mouse DRG neurons damaged Piezo2-mediated rapidly adapting mechanically activated currents, and re-expression of EndoA2 rescued the MA currents. In addition, interference with EndoA2 also suppressed touch sensitivity and mechanical hypersensitivity in nonhuman primates. CONCLUSIONS: Our data reveal that the KIF5B/EndoA2/Piezo2 complex is essential for Piezo2 trafficking and for sustaining transmission of touch and mechanical hypersensitivity signals. EndoA2 regulates touch and mechanical allodynia via kinesin-mediated Piezo2 trafficking in sensory neurons. Our findings identify a potential new target for the treatment of mechanical pain.


Assuntos
Aciltransferases , Hiperalgesia , Canais Iônicos , Tato , Animais , Feminino , Masculino , Camundongos , Hiperalgesia/patologia , Canais Iônicos/metabolismo , Cinesinas/metabolismo , Mecanotransdução Celular/fisiologia , Camundongos Endogâmicos C57BL , Dor , Primatas , Tato/fisiologia , Aciltransferases/metabolismo
11.
PLoS One ; 19(3): e0295652, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478520

RESUMO

In intracellular active transport, molecular motors are responsible for moving biological cargo along networks of microtubules that serve as scaffolds. Cargo dynamics can be modified by different features of microtubule networks such as geometry, density, orientation modifications. Also, the dynamical behaviour of the molecular motors is determined by the microtubule network and by the individual and/or collective action of the motors. For example, unlike single kinesins, the mechanistic behavior of multiple kinesins varies from one experiment to another. However, the reasons for this experimental variability are unknown. Here we show theoretically how non-radial and quasi-radial microtubule architectures modify the collective behavior of two kinesins attached on a cargo. We found out under which structural conditions transport is most efficient and the most likely way in which kinesins are organized in active transport. In addition, with motor activity, mean intermotor distance and motor organization, we determined the character of the collective interaction of the kinesins during transport. Our results demonstrate that two-dimensional microtubule structures promote branching due to crossovers that alter directionality in cargo movement and may provide insight into the collective organization of the motors. Our article offers a perspective to analyze how the two-dimensional network can modify the cargo-motor dynamics for the case in which multiple motors move in different directions as in the case of kinesin and dynein.


Assuntos
Dineínas , Cinesinas , Cinesinas/metabolismo , Transporte Biológico , Transporte Biológico Ativo , Dineínas/metabolismo , Microtúbulos/metabolismo
12.
J Cell Sci ; 137(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477340

RESUMO

Axonal transport in neurons is essential for cargo movement between the cell body and synapses. Caenorhabditis elegans UNC-104 and its homolog KIF1A are kinesin-3 motors that anterogradely transport precursors of synaptic vesicles (pre-SVs) and are degraded at synapses. However, in C. elegans, touch neuron-specific knockdown of the E1 ubiquitin-activating enzyme, uba-1, leads to UNC-104 accumulation at neuronal ends and synapses. Here, we performed an RNAi screen and identified that depletion of fbxb-65, which encodes an F-box protein, leads to UNC-104 accumulation at neuronal distal ends, and alters UNC-104 net anterograde movement and levels of UNC-104 on cargo without changing synaptic UNC-104 levels. Split fluorescence reconstitution showed that UNC-104 and FBXB-65 interact throughout the neuron. Our theoretical model suggests that UNC-104 might exhibit cooperative cargo binding that is regulated by FBXB-65. FBXB-65 regulates an unidentified post-translational modification (PTM) of UNC-104 in a region beside the cargo-binding PH domain. Both fbxb-65 and UNC-104, independently of FBXB-65, regulate axonal pre-SV distribution, transport of pre-SVs at branch points and organismal lifespan. FBXB-65 regulates a PTM of UNC-104 and the number of motors on the cargo surface, which can fine-tune cargo transport to the synapse.


Assuntos
Transporte Axonal , Proteínas de Caenorhabditis elegans , Proteínas F-Box , Cinesinas , Animais , Transporte Axonal/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas F-Box/metabolismo , Cinesinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Domínios de Homologia à Plecstrina , Processamento de Proteína Pós-Traducional
13.
Aging (Albany NY) ; 16(7): 6163-6187, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552217

RESUMO

Kinesin Family Member 3C (KIF3C) assumes a crucial role in various biological processes of specific human cancers. Nevertheless, there exists a paucity of systematic assessments pertaining to the contribution of KIF3C in human malignancies. We conducted an extensive analysis of KIF3C, covering its expression profile, prognostic relevance, molecular function, tumor immunity, and drug sensitivity. Functional enrichment analysis was also carried out. In addition, we conducted in vitro experiments to substantiate the role of KIF3C in gastric cancer (GC). KIF3C expression demonstrated consistent elevation in various tumors compared to their corresponding normal tissues. We further unveiled that heightened KIF3C expression served as a prognostic indicator, and its elevated levels correlated with unfavorable clinical outcomes, encompassing reduced OS, DSS, and PFS in several cancer types. Notably, KIF3C expression exhibited positive associations with the pathological stages of several cancers. Moreover, KIF3C demonstrated varying relationships with the infiltration of various distinct immune cell types in gastric cancer. Functional analysis outcomes indicated that KIF3C played a role in the PI3K-AKT signaling pathway. Drug sensitivity unveiled a positive relationship between KIF3C in gastric cancer and the IC50 values of the majority of identified anti-cancer drugs. Additionally, KIF3C knockdown reduced the proliferation, migration, and invasion capabilities, increased apoptosis, and led to alterations in the cell cycle of gastric cancer cells. Our research has revealed the significant and functional role of KIF3C as a tumorigenic gene in diverse cancer types. These findings indicate that KIF3C may serve as a promising target for the treatment of gastric cancer.


Assuntos
Biomarcadores Tumorais , Cinesinas , Neoplasias Gástricas , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Movimento Celular/genética , Transdução de Sinais
14.
Dig Dis Sci ; 69(4): 1274-1286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446308

RESUMO

BACKGROUND & AIMS: Kinesin family member 18A (KIF18A) is notable for its aberrant expression across various cancer types and its pivotal role is driving cancer progression. In this study, we aim to investigate the intricate molecular mechanisms underlying the impact of KIF18A on the progression of HCC. METHODS: Western blotting assays, a quantitative real-time PCR and immunohistochemical analyses were performed to quantitatively assess KIF18A expression in HCC tissues. We then performed genetic manipulations within HCC cells by silencing endogenous KIF18A using short hairpin RNA (shRNA) and introducing exogenous plasmids to overexpress KIF18A. We monitored cell progression, analyzed cell cycle and cell apoptosis and assessed cell migration and invasion both in vitro and in vivo. Moreover, we conducted RNA-sequencing to explore KIF18A-related signaling pathways utilizing Reactome and KEGG enrichment methods and validated these critical mediators in these pathways. RESULTS: Analysis of the TCGA-LIHC database revealed pronounced overexpression of KIF18A in HCC tissues, the finding was subsequently confirmed through the analysis of clinical samples obtained from HCC patients. Notably, silencing KIF18A in cells led to an obvious inhibition of cell proliferation, migration and invasion in vitro. Furthermore, in subcutaneous and orthotopic xenograft models, suppression of KIF18A sgnificantly redudce tumor weight and the number of lung metastatic nodules. Mechanistically, KIF18A appears to facilitate cell proliferation by upregulating MAD2 and CDK1/CyclinB1 expression levels, with the activation of SMAD2/3 signaling contributing to KIF18A-driven metastasis. CONCLUSION: Our study elucidates the molecular mechanism by which KIF18A mediates proliferation and metastasis in HCC cells, offering new insights into potential therapeutic targets.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias Hepáticas/patologia , Biomarcadores Tumorais/genética , Proliferação de Células , RNA Interferente Pequeno , Família , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Linhagem Celular Tumoral
15.
J Bone Miner Res ; 39(3): 287-297, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477767

RESUMO

Heterozygous variants in KIF22, encoding a kinesin-like protein, are responsible for spondyloepimetaphyseal dysplasia with joint laxity, leptodactilic type (lepto-SEMDJL), characterized by short stature, flat face, generalized joint laxity with multiple dislocations, and progressive scoliosis and limb deformity. By targeted gene sequencing analysis, we identified a homozygous KIF22 variant (NM_007317.3: c.146G>A, p.Arg49Gln) in 3 patients from 3 unrelated families. The clinical features appeared similar to those of patients carrying heterozygous KIF22 variant (c.443C>T or c.446G>A), although the spinal involvement appeared later and was less severe in patients with a recessive variant. Relatives harboring the c.146G>A variant at the heterozygous state were asymptomatic. The homozygous KIF22 variant c.146G>A affected a conserved residue located in the active site and potentially destabilized ATP binding. RT-PCR and western blot analyses demonstrated that both dominant and recessive KIF22 variants do not affect KIF22 mRNA and protein expression in patient fibroblasts compared to controls. As lepto-SEMDJL presents phenotypic overlap with chondrodysplasias with multiple dislocations (CMD), related to defective proteoglycan biosynthesis, we analyzed proteoglycan synthesis in patient skin fibroblasts. Compared to controls, DMMB assay showed a significant decrease of total sulfated proteoglycan content in culture medium but not in the cell layer, and immunofluorescence demonstrated a strong reduction of staining for chondroitin sulfates but not for heparan sulfates, similarly in patients with recessive or dominant KIF22 variants. These data identify a new recessive KIF22 pathogenic variant and link for the first time KIF22 pathogenic variants to altered proteoglycan biosynthesis and place the lepto-SEMDJL in the CMD spectrum.


Heterozygous variants in KIF22, encoding a kinesin-like protein, are responsible for spondyloepimetaphyseal dysplasia with joint laxity, leptodactilic type (lepto-SEMDJL), characterized by short stature, flat face, generalized joint laxity with multiple dislocations, and progressive scoliosis and limb deformity. We identified a homozygous KIF22 variant (NM_007317.3: c.146G>A, p.Arg49Gln) in 3 patients from 3 unrelated families. The clinical features appeared similar to those of patients carrying heterozygous KIF22. The homozygous KIF22 variant c.146G>A affected a conserved residue located in the active site and potentially destabilized ATP binding. As lepto-SEMDJL presents phenotypic overlap with chondrodysplasias with multiple dislocations, related to defective proteoglycan biosynthesis, we analyzed proteoglycan synthesis in patient skin fibroblasts and showed a significant decrease of total sulfated proteoglycan content in culture medium, similarly in patients with recessive or dominant KIF22 variants. These data identify a new recessive KIF22 pathogenic variant and link for the first time KIF22 pathogenic variants to altered proteoglycan biosynthesis.


Assuntos
Instabilidade Articular , Osteocondrodisplasias , Humanos , Instabilidade Articular/genética , Cinesinas/genética , Osteocondrodisplasias/genética , Família , Proteínas de Ligação a DNA
16.
Cancer Lett ; 588: 216815, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38490329

RESUMO

Epigenetic modifiers are upregulated during the process of prostate cancer, acquiring resistance to castration therapy and becoming lethal metastatic castration-resistant prostate cancer (CRPC). However, the relationship between regulation of histone modifications and chromatin structure in CRPC has yet not fully been validated. Here, we reanalyzed publicly available clinical transcriptome and clinical outcome data and identified NSD2, a histone methyltransferase that catalyzes H3K36me2, as an epigenetic modifier that was upregulated in CRPC and whose increased expression in prostate cancer correlated with higher recurrence rate. We performed ChIP-seq, RNA-seq, and Hi-C to conduct comprehensive epigenomic and transcriptomic analyses to identify epigenetic reprogramming in CRPC. In regions where H3K36me2 was increased, H3K27me3 was decreased, and the compartment was shifted from inactive to active. In these regions, 68 aberrantly activated genes were identified as candidate downstream genes of NSD2 in CRPC. Among these genes, we identified KIF18A as critical for CRPC growth. Under NSD2 upregulation in CRPC, epigenetic alteration with H3K36me2-gain and H3K27me3-loss occurs accompanying with an inactive-to-active compartment shift, suggesting that histone modification and chromatin structure cooperatively change prostate carcinogenesis.


Assuntos
Cromatina , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Receptores Androgênicos/metabolismo , Cinesinas/metabolismo
17.
Int Immunopharmacol ; 131: 111613, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38489970

RESUMO

BACKGROUND: Bladder cancer (BCa) is a common malignant disease with high recurrence and poor prognosis. Several circular RNAs (circRNAs) have been found to be associated with the malignant progression of bladder cancer (BCa). Here, the aim of this study was to investigate the expression, role and mechanism of circRAPGEF5 in BCa progression. METHODS: Quantitative real-time PCR (qRT-PCR) and immunoblotting were used to detect gene and protein expression levels. In vitro functional studies were performed using CCK-8, colony formation, wound healing and Transwell assays, respectively, and a mouse xenograft tumor model was established to perform in vivo experiments. Bioinformatic predictions as well as luciferase reporter assays and RNA pull-down assays were used to probe circRAPGEF5-mediated competitive endogenous RNA (ceRNA) network. RESULTS: CircRAPGEF5 was significantly overexpressed in BCa patients (p < 0.05), indicating a potential unsatisfactory prognosis. Functionally, knockdown of circRAPGEF5 inhibited the growth, migration and invasion of BCa cells in vitro (p < 0.05), as well as BCa growth in vivo (p < 0.05). Mechanistically, circRAPGEF5 acted as a sponge for miR-582-3p and targeted kinesin family member 3A (KIF3A). In addition, rescue experiments showed that inhibition of miR-582-3p or overexpression of KIF3A reversed the anticancer effects of circRAPGEF5 knockdown on BCa cells (p < 0.05). CONCLUSION: Silencing circRAPGEF5 inhibits BCa proliferation, migration and invasion via the miR-582-3p/KIF3A axis, demonstrating a promising target for BCa-targeted therapy.


Assuntos
MicroRNAs , RNA Circular , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Cinesinas/genética , Cinesinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , RNA Circular/metabolismo
18.
J Comput Aided Mol Des ; 38(1): 16, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556596

RESUMO

The kinesin spindle protein (Eg5) is a mitotic protein that plays an essential role in the formation of the bipolar spindles during the mitotic phase. Eg5 protein controls the segregation of the chromosomes in mitosis which renders it a vital target for cancer treatment. In this study our approach to identifying novel scaffold for Eg5 inhibitors is based on targeting the novel allosteric pocket (α4/α6/L11). Extensive computational techniques were applied using ligand-based virtual screening and molecular docking by two approaches, MOE and AutoDock, to screen a library of commercial compounds. We identified compound 8-(3-(1H-imidazol-1-ylpropylamino)-3-methyl-7-((naphthalen-3-yl)methyl)-1H-purine-2, 6 (3H,7H)-dione (compound 5) as a novel scaffold for Eg5 inhibitors. This compound inhibited cancer cell Eg5 ATPase at 2.37 ± 0.15 µM. The molecular dynamics simulations revealed that the identified compound formed stable interactions in the allosteric pocket (α4/α6/L11) of the receptor, indicating its potential as a novel Eg5 inhibitor.


Assuntos
Cinesinas , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Cinesinas/metabolismo , Ligantes , Mitose
20.
Mol Biol Cell ; 35(5): ar61, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446634

RESUMO

Neurons are polarized cells that require accurate membrane trafficking to maintain distinct protein complements at dendritic and axonal membranes. The Kinesin-3 family members KIF13A and KIF13B are thought to mediate dendrite-selective transport, but the mechanism by which they are recruited to polarized vesicles and the differences in the specific trafficking role of each KIF13 have not been defined. We performed live-cell imaging in cultured hippocampal neurons and found that KIF13A is a dedicated dendrite-selective kinesin. KIF13B confers two different transport modes, dendrite- and axon-selective transport. Both KIF13s are maintained at the trans-Golgi network by interactions with the heterotetrameric adaptor protein complex AP-1. Interference with KIF13 binding to AP-1 resulted in disruptions to both dendrite- and axon-selective trafficking. We propose that AP-1 is the molecular link between the sorting of polarized cargoes into vesicles and the recruitment of kinesins that confer polarized transport.


Assuntos
Complexo 1 de Proteínas Adaptadoras , Complexo de Golgi , Cinesinas , Rede trans-Golgi , Células Cultivadas , Complexo de Golgi/metabolismo , Cinesinas/metabolismo , Neurônios/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia , Complexo 1 de Proteínas Adaptadoras/metabolismo , Rede trans-Golgi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...